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1. Introduction

In lecture 1 we discussed how regression gives the best (MMSE) linear approximation of the CEF (re-

gression justi�cation III).

This, of course, doesn�t necessarily imply that a regression coe¢ cient can be given a causal in-

terpretation. Because regression inherits its legitimacy from the CEF, it follows that whether causal

interpretation of regression coe¢ cients is appropriate depends on whether the CEF can be given a casual

interpretation.

So what do we mean by causality? Angrist-Pischke (AP) think of causal relationships in terms of the

potential outcomes framework, to describe what would happen to a given individual in a hypothetical

comparison of alternative (e.g. hospitalization) scenarios. If we de�ne "causal e¤ect" as the di¤erences in

potential outcomes, it follows that the CEF if causal when it describes di¤erences in average potential

outcomes for a �xed reference population.

Once we�ve de�ned the CEF to be causal, the key question becomes if/how regression can be used to

estimate the causal e¤ects of interest. Lectures 3-7 will revolve around this particular question.

References for this lecture:

Angrist and Pischke (2009), Chapters 3.2-3.3.

For a short, nontechnical yet brilliant introduction to treatment e¤ects, see "Treatment E¤ects" by

Joshua Angrist, forthcoming in the New Palgrave.

I�ll use data that have been analyzed in the following paper:

Gilligan, Daniel O. and John Hoddinott (2007). "Is There Persistence in the Impact of Emergency

Food Aid? Evidence on Consumption, Food Security and Assets in Rural Ethiopia," American Journal

of Agricultural Economics
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2. Regression and Causality

The Conditional Independence Assumption. Let�s focus on the earnings-education relationship.

Suppose our goal is to estimate the causal e¤ect of schooling on earnings. Given our de�nition of causality,

this amounts to asking what people would earn, on average, if we could either

� change their schooling in a perfectly controlled environment

� change their schooling randomly so that the those with di¤erent levels of schooling would otherwise

be comparable.

As discussed in chapter 2, a randomized trial (experiment) ensures independence between potential

outcomes and the causal variable of interest. In this case, the groups being compared - e.g. college

graduates and non-graduates - are truly comparable (i.e. they don�t di¤er systematically with respect to

other characteristics determining earnings). But if all we have is non-experimental data, this may not be

the case.

Let�s return to the potential outcomes framework:

Potential outcome =

8>><>>:
Y1i = outcome for i if treated

Y0i = outcome for i if not treated

9>>=>>; :

Initially, think of treatment as binary: e.g. college schooling or not. Hence, Y1i measures potential

earnings for individual i if s/he has college education and Y0i measures potential earnings for i if s/he

does not have college education.

Hence, Y1i � Y0i is the causal e¤ect of college education on earnings for individual i.

The observed outcome Yi can be written in terms of potential outcomes as

Yi = Y0i + (Y1i � Y0i)Ci

where Ci is a treatment dummy variable equal to 1 if individual i received treatment, and 0 otherwise.
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We can�t measure Y1i � Y0i since we never observe both Y1i and Y0i:

Our goal is to measure the average of Y1i � Y0i (the average treatment e¤ect; ATE), perhaps for the

sub-group of people who went to college (the average treatment e¤ect on the treated; ATT).

We suspect we won�t be able to learn about the causal e¤ect of college education simply by comparing

the average levels of earnings by education status because of selection bias:

E [YijCi = 1]� E [YijCi = 0] =

E [Y1ijCi = 1]� E [Y0ijCi = 1] (ATT)

+E [Y0ijCi = 1]� E [Y0ijCi = 0] (Selection bias).

We suspect that potential outcomes under non-college status are better for those that went to college

than for those that did not; i.e. there is positive selection bias.

The conditional independence assumption (CIA): Conditional on observed characteristics Xi,

the selection bias disappears. That is:

fY0i; Y1ig independent of Ci, conditional on Xi:

In words: If we are looking at individuals with the same characteristics X, then fY0i; Y1ig and Ci

are independent. It follows that, given CIA, conditional-on-Xi comparisons of average earnings across

schooling levels have a causal interpretation:

E [YijXi; Ci = 1]� E [YijXi; Ci = 0] = E [Y1i � Y0ijXi] :

For obvious reasons, this quantity is interpretable as the average conditional treatment e¤ect.

So far we�ve focused on binary treatment variables, i.e. variables that can take two values. Now

generalize the framework so that the treatment variable can take more than 2 values. Focus now on years

of schooling as the treatment variable, and de�ne the potential outcome associated with schooling level

4



s as

Ysi � fi (S) ;

where we put an i-subscript on the f (:) function to show that the potential earnings are individual

speci�c. The CIA in this more general setup becomes

fYsig independent of Ci, conditional on Xi for all s:

Conditional on Xi, the average causal e¤ect of a one-year increase in schooling is

E (fi (S)� fi (S � 1) jXi) ; (2.1)

for any value of s. Consequently, we will have separate causal e¤ects for each value taken on by the

conditioning variables X. To get the unconditional average causal e¤ect of (say) high school graduation

(which amounts to increasing S from 11 to 12), we take expectations using the distribution of X:

E [E (fi (S = 12)� fi (S = 11) jXi)]

= E (fi (S = 12)� fi (S = 11)) : (2.2)

How might we compute quantities like (2.1) or (2.2) in practice?

� One option would be to compare individuals for whom the values of X are identical. This is known

as exact matching on observables.

� Whilst �exible, matching has problems of its own (can you think of any?). We will return to this

below. A simpler approach is regression - but we need to think about how we can justify regression

given the CIA.

Estimation by regression. Regression is an easy-to-use empirical strategy. There are essentially 2

ways of going from the CIA to regression:
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1. We could assume that fi (S) is i) linear in S, and ii) the same for everyone except for an additive

error term. However, this is quite a strong assumption.

2. If we assume that there is heterogeneity fi (S) across individuals and/or that f is nonlinear, re-

gression can be thought of as a strategy for estimating a weighted average of the individual-speci�c

di¤erence fi (S)� fi (S � 1) :

Focus on the �rst of these settings for simplicity. Our linear constant e¤ects causal model is written

as

fi (S) = �+ �S + �i:

Writing this in terms of observables (use Yi instead of fi (S); and Si instead of S), we get

Yi = �+ �Si + �i:

Now, suppose schooling (Si) is correlated with potential earnings outcomes Ysi. This would show up here

as a correlation between Si and the residual �i (how?).

Further suppose that the CIA holds given a vector of observed covariates Xi. In fact, suppose the

random part of potential earnings (�i) can be written as a linear function of Xi plus an error term vi:

�i = Xi + vi;

where  is a vector of population coe¢ cients satisfying

E (�ijXi) = Xi:

It follows from the CIA that

E (fi (S) jXi; Si) = E (fi (S) jXi) ;
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(conditional independence of potential outcomes), which in turn is written now as

E (fi (S) jXi) = E (�+ �S +Xi + vi)

= �+ �S +Xi:

Hence, the residual vi in the linear causal model

Yi = �+ �Si +Xi + vi (2.3)

is uncorrelated with the regressors Si; Xi. The regression coe¢ cient � is the causal e¤ect of interest.

Recall: The key assumption here is that the observable characteristics Xi are the only reason why �i

and Si are correlated.

The Omitted Variables Bias Formula. The speci�cation (2.3) thus contains a set of control variables

Xi. We refer to this as being a "long" regression and we refer to a speci�cation without the control

variables as a "short" regression. The omitted variables bias (OVB) formula describes the relationship

between the estimates across the two speci�cations

Yi = as + rs � Si + ui (Short)

Yi = �+ � � Si +Xi + vi: (Long)

In particular, if we leave out Xi (and thus estimate the short regression), we will get

rs =
Cov (Yi; Si)

V (Si)
= �+ 0�Xs (2.4)
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where �Xs is the vector of coe¢ cients from regressions of the elements of Xi on Si; that is,

X1i = d1 + �1XsS + e1i

X2i = d2 + �2XsS + e2i

(:::)

XKi = dK + �KXsS + eKi;

�Xs = (�1Xs; �2Xs; :::; �KXs). Note: the vector of coe¢ cients �Xs should not be given a causal

interpretation. Equation (2.4) is the OVB.

Clearly the long and the short regression will give the same results if the omitted and included variables

are uncorrelated.

� Now use the OVB framework to assess the likely consequences of omitting ability for schooling

coe¢ cients in earnings regressions.

� Apply this way of thinking when studying the regression results in the handout that I circulated in

lecture 1.

� Have a close look at the results in Table 3.2.1 (p. 62) in AP, summarized here:

Table 3.2.1

Estimates of the returns to education for men in the NLSY

(1) (2) (3) (4) (5)

Controls None Age Col. (2) Col. (3) Col. (4)

dummies + additional +AFQT + job dummies

.132 .131 .114 .087 .066

(.007) (.007) (.007) (.009) (.010)

Let�s take stock.

� Assume the CEF is causal.
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� Assume CIA holds for your empirical speci�cation.

� Then there can be no omitted variables bias, and your regression thus has a causal interpretation.

So how do we know if CIA holds?

� Random assignment conditional on X (e.g. random assignment to training, conditional on covari-

ates; Black et al. 2003, referenced in AP).

� Detailed institutional knowledge regarding the process that determines Si.

Bad Control. Perhaps you get the impression that controlling for more covariates always increases the

likelihood that regression estimates have a causal interpretation. Well, this is often true - but not always.

Some variables are bad controls and should not be included in a regression even when their inclusion

might be expected to change the short regression coe¢ cients (i.e. they are correlated with the explanatory

variables of interest and with the outcome variable).

Bad controls are variables that are themselves outcomes of the treatment variable.

Earlier in the course, we talked about IQ test scores plausibly being determined by education - in

which case IQ test scores would be a bad control.

Good controls, in contrast, are variables that we can think of as having been �xed at the time the

treatment variable was determined.

Illustration: Suppose we are interested the e¤ects of a college degree on earnings; and suppose there

are two types of jobs - white collar and blue collar. Suppose we add controls for occupation in our

earnings regression. Why might this not be a good idea?

Well it seems likely that the type of job someone gets depends on his or her education; presumably,

you�re more likely to get a white collar job if you have a college degree.

Now formalize the nature of the problem. Let Wi be a dummy variable = 1 for white collar workers

and 0 for blue collar workers. Let Yi denote earnings. Suppose these are both outcome variables driven
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by education:

Yi = CiYi1 + (1� Ci)Yi0

Wi = CiWi1 + (1� Ci)Wi0;

where Ci = 1 for college graduates and is zero otherwise. Further, fY0i; Y1ig denote potential earnings

outcomes, while fW0i;W1ig denote potential white collar status (e.g. if .W0i = 0;W1i = 1, this means the

individual needs college education to get a white collar job; whereas if W0i = 1;W1i = 1, the individual

will get a white collar even if s/he doesn�t have college education)

We assume Ci is randomly assigned so that it is independent of all potential outcomes. This implies

we can estimate the causal e¤ects of Ci on earnings and job type simply as the di¤erence in means:

E (YijCi = 1)� E (YijCi = 0) = E (Y1i � Y0i)

E (WijCi = 1)� E (WijCi = 0) = E (W1i �W0i) :

Note the absence of a control for job type in the �rst of these expressions.

Bad control means that a comparison of earnings conditional on Wi does not have a causal interpre-

tation.

To see why, consider the di¤erence in means for individuals with and without college education, where

everyone has a white collar job:

E (YijWi = 1; Ci = 1)� E (YijWi = 1; Ci = 0) :

This can be written in terms of potential outcomes as

E (Y1ijW1i = 1; Ci = 1)� E (Y0ijW0i = 1; Ci = 0) :
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Random assignment of treatment implies this can be written as

E (Y1ijW1i = 1)� E (Y0ijW0i = 1)

= E (Y1i � Yi0jW1i = 1) (average causal e¤ect)

+E (Y0ijW1i = 1)� E (Y0ijW0i = 1) (selection bias).

Now interpret the selection bias term.

� First term: expected potential non-college earnings, given that potential white collar status associ-

ated with college education is equal to 1.

� Second term: expected potential non-college earnings, given that potential white collar status as-

sociated with non-college education is equal to 1 - likely high; if, despite no college education, you

get a white collar job, you are probably �special�i.e. have a high Y0i).

AP discusses a variant on this theme, which the refer to as �proxy control�. Read if you are interested

(personally, I don�t think it adds new insights to what we�ve already learned about bad control).

3. Matching

This part of the lecture is based on Section 3.3.1 in AP but with a di¤erent emphasis: AP focus on estab-

lishing how regression and matching estimates are theoretically related; I focus on explaining matching.

Exact matching. Recall our favorite formula:

E [YijDi = 1]� E [YijDi = 0] =

E [Y1ijDi = 1]� E [Y0ijDi = 1] (ATT)

+E [Y0ijDi = 1]� E [Y0ijDi = 0] (Selection bias),
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where Di is a dummy variable for treatment.

The CIA in this context says that, conditional on Xi, the potential outcomes Y0i; Y1i are independent

of actual treatment. In other words, selection bias disappears after conditioning on Xi.

We can write the average e¤ect of treatment on the treated as

�TOT = E [Y1i � Y0ijDi = 1]

= E fE [Y1i � Y0ijXi; Di = 1] jDi = 1g

= E fE [Y1ijXi; Di = 1]� E [Y0ijXi; Di = 1] jDi = 1g ;

where the last term is the counterfactual.

Now observe that the CIA implies

E [Y0ijXi; Di = 0] = E [Y0ijXi; Di = 1] ;

enabling me to write

�TOT = E fE [Y1ijXi; Di = 1]� E [Y0ijXi; Di = 0] jDi = 1g ;

or

�TOT = E [�X jDi = 1]

where

�X � E [YijXi; Di = 1]� E [YijXi; Di = 0] ;

is the (observable) di¤erence in mean Y (e.g. earnings) at a given Xi.

How are we going to estimate �TOT ?

12



Suppose Xi is discrete - then we can write

E [Y1i � Y0ijDi = 1] =
X
x

�XP (Xi = xjDi = 1) ;

where P (Xi = xjDi = 1) is a probability density function. That is, we compute �X for each value of Xi,

and then compute a weighted average of the di¤erent �X :

This approach is known as exact matching.

How would we compute the average treatment e¤ect (unconditional of actual treatment)?

[Now turn to Section 1 in the appendix.]

� Suppose the observation with id=6 had not been included in the "data" just examined, so that

there were no observations in the data for which (D = 1; x = 1). What would be the implication of

that? Think of a real example where something similar might happen.

As we�ve seen above, matching as a strategy to control for covariates is motivated by the CIA,

amounting to covariate-speci�c treatment-control comparisons.

So, matching follows from the CIA.

We�ve also seen that causal interpretation of a regression coe¢ cient is based on the CIA too.

So - matching and regression are both control strategies.

Does matching really di¤er from regression?

AP discuss the relationship between matching and regression on pp.74-77. This gets quite technical

- consider this optional material. Personally, I �nd it somewhat useful to cast the matching estimator

above in a regression framework:

Yi = �0 + �1Di +X�2 + (DiX)�3 + residual,

where �0 and �1 are coe¢ cients, �2; �3 are vectors, and X is a vector of dummy variables for each unique

value of X. Note, for example, that this is exactly the type of regression shown on page 3 in the appendix
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(and we�ve seen how to compute the average treatment e¤ects from those estimates) . The speci�cation

above stands in contrast to what one would �typically�adopt in regression analysis:

Yi = �0 + �1Di +X�2 + residual,

where �0 and �1 are coe¢ cients, and �2 is a vector. This speci�cation is easier to interpret (just focus on

the coe¢ cient �1) and more restrictive (no DiX interaction terms are included).

Control for Covariates Using the Propensity Score. Consider modelling the likelihood of being

treated by means of a binary choice model (e.g. logit or probit):

Pr (Di = 1jx) = F (Xi�) � p (Xi) :

In the treatment literature, the function p (Xi) is known as the propensity score. A useful property

of the propensity score emerges in the context of estimating by matching, where the idea is to match

individuals with similar propensity scores.

� The Propensity Score Theorem: Suppose the CIA holds, so that conditional on X, D and

(y1; y0) are independent. Then it must be that, conditional on the propensity score p (Xi), D and

(y1; y0) are independent. See AP, p.81 for a straightforward proof.

� This theorem says that you need only control for the probability of treatment itself.

� How might we adjust the matching approach outlined so as to enable us to match on the propensity

score? What�s the big advantage of matching on the propensity score compared to exact matching?

� Before we can do anything with the propensity scores, they need to be estimated. This is typically

done by means of a logit or probit. After estimation (in Stata), the propensity scores can be obtained

by typing predict propscore, p. In fact, we don�t even have to do this - the Stata command pscore

does this for us, as well as some basic analysis of its properties.
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� The basic idea behind the propensity score matching estimator is quite appealing. To estimate the

counterfactual y0i (i.e. the outcome that individual i; who was treated, would have recorded had

s/he not been treated), use one or several observations in the (nontreated) control group that are

similar to individual i, in terms of the propensity score.

� While this may sound relatively straightforward, keep in mind that you will need a complete set of

variables determining selection into treatment for propensity score matching to work (this follows

from CIA). That is, if your dataset does not contain the relevant variables determining selection,

then your binary choice model (the �rst stage) will not generate useful propensity scores in this

context, essentially because the propensity scores do not control fully for selection.

� Of course, it�s hard to know a priori what constitutes the right set of explanatory variables in the

�rst stage. Should draw on economic theory. The more you know about the process determining

treatment, the more convincing is this particular identi�cation strategy. Angrist & Pischke cite

evidence suggesting that a logit model with a few polynomial terms in continuous covariates works

well in practice, but note that some experimentation will be required in practice.

� Notice that, under pure randomization, no variable can explain treatment, and so in this case the

pseudo-R-squared should be very close to zero.

Common support.

� Now suppose that we have estimated the propensity scores by means of logit or probit. Remember

that one of the cornerstones of matching estimators is that treated and nontreated individuals need

to be comparable.

� Suppose we �nd that there are a lot of treated observations with higher (lower) propensity scores

than the maximum (minimum) propensity score in the control group. How do we match these

treated observations? Because there are no observations in the control group that are similar to

these, matching will not be possible (extrapolation is not thought an option). Consequently all
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these treated observations that fall outside the common support region get dropped from the

analysis.

� Also, notice that a conceptual issue arises here: we can never hope to estimate treatment e¤ects

on the treated outside the group of observations for which there is common support. Hence, the

estimated e¤ects should be interpreted as valid only for the sub-population of treated individuals

for which there is support in the control group.

Finding the match and estimating the treatment e¤ect If we are satis�ed the propensity score is

a good basis for matching nontreated and treated individuals, we are now ready to estimate the average

treatment e¤ect. The general formula for the matching ATT estimator is

ATTM =
1

NT

X
i2fD=1g

0@y1;i � X
j2fD=0g

� (i; j) y0;j

1A ;
where fD = 1g is the set of treated individuals, fD = 0g is the set of nontreated individuals (the control

group), and � (i; j) is a weight. Notice that
P

j2fD=0g � (i; j) y0;j is interpretable as the counterfactual

for individual i, i.e. his or her outcome had s/he not been treated. This counterfactual is thus calculated

as a weighted average of outcomes in the control group.

The issue now is how to calculate the weight. There are several possibilities.

� The simplest one is nearest-neighbour matching. This involves �nding, for each treated individ-

ual in the data, the untreated observation with the most similar propensity score. That observation

is then given a weight equal to one, and all other observations get zero weights. Once the data have

been set up accordingly, one would then use the above general formula for the matching ATT .

� Another method is kernel matching. In this case

� (i; j) =
K
�
p (x)j � p (x)i

�
PNC;i

j=1 K
�
p (x)j � p (x)i

� ;
where K is a kernel function.
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� A kernel function is an important tool in nonparametric and semiparametric analysis. K is a

symmetric density function which has its maximum when its argument is zero, and decreases as

the absolute argument of K increases. In other words, if p (x)j = p (x)i in the formula above, then

the value of K is relatively high, whereas if p (x)j is very di¤erent from p (x)i then K will be close

to, or equal to, zero. You see how this gives most weight to observations in the control group for

which the propensity scores are close to that of the treated individual i. If you want to learn more

about kernel functions, I warmly recommend the book by Adonis Yatchew (2003), Semiparametric

Regression for the Applied Econometrician, Cambridge University Press.

� To better understand how kernel matching works, now focus on the calculation of the counterfactual

for the ith treated individual. By de�nition, the contribution to the ATT of treated individual i is

y1;i �
X

j2fD=0g

� (i; j) y0;j ;

where yii is observed in the data. The snag is that we need to compute the counterfactual of

individual i, namely y0;i. This is calculated as

X
j2fw=0g

� (i; j) y0;j :

Section 2 in the appendix provides details on how this works, using the Hoddinott-Gilligan food

aid data from Ethiopia.

3.1. Regression or matching?

� The regression approach is easy to implement and interpret.

�But there may be too much extrapolation. The idea underlying matching estimators is that

you should compare the outcomes of two individuals with similar characteristics, except one

was treated and the other wasn�t. This idea is not really central to the regression approach.
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Suppose we write the regression as

yi =  + �Di + �xi + "i:

You might say � is being estimated �controlling for x�, but it may be that most high values of

x are associated with D = 1, and most low values of x are associated with D = 0. Suppose

we want to calculate the (conditional) treatment e¤ect E (Y1i � Y0ijxi is �high�). For treated

observations, we observe Y1i in the data, but need the counterfactual Y0i. This counterfactual

is thus the hypothetical value of the outcome variable under a) nontreatment; and b) a high

value of x. The problem is that are very few observations in the control group with x high, and

so the expected counterfactual E (Y0ijxi is �high�) is mostly based on combining observations

on outcomes for which fD = 1; x highg and observations on outcomes for which fD = 0; x

lowg. But whether this gives a good estimate of E (y0ijxi is �high�) is uncertain, and hinges

on the extrapolation not being misleading.

�Regressions also impose a functional form relationship between treatment and outcomes, be-

cause we need to write down the precise form of the speci�cation in order to estimate the

parameters by regression. But functional form assumptions are often arbitrary and can lead

to misleading results.

� The matching estimator, in contrast to the regression approach, estimates treatment e¤ects using

only observations in the region of common support. There is thus no extrapolation. Furthermore,

there are no functional form assumptions in the second stage, which is attractive.

�But we can never hope to estimate treatment e¤ects on the treated outside the region of

common support.

�At least in small samples, it is often the case that estimated treatment e¤ects change quite a lot

when we change the matching method (e.g. kernel matching vs. nearest neighbor matching).
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�Two-stage procedure means the standard errors in the second stage are unreliable. So more

work is required - bootstrapping is often used.

� Moreover, as noted by Hahn (1998), cited in AP, p.84 the asymptotic standard errors associated

with propensity score matching estimator will be higher than those associated with an estimator

matching on any covariate that explains outcomes (regardless of it turns up in the propensity score

or not). Angrist and Hahn (2004), also cited in Angrist-Pischke, note that Hahn�s argument is less

compelling in small samples.
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PhD Programme: Econometrics II 
Department of Economics, University of Gothenburg 
Appendix Lecture 3 
Måns Söderbom 
 
1. Exact matching: A simple example 
 
Suppose your dataset looks like this: 
 

id y D x 
1 4 0 0 
2 6 1 0 
3 5 0 0 
4 8 1 0 
5 2 0 1 
6 5 1 1 
7 2 0 1 

 

How would you estimate the average treatment effect on the treated (ATT) and the 
average treatment effect (ATE) here? Recall the formula for the ATT: 
 

 
where 
 

 
Hence, all we need to do is to estimate these quantities.  
 
In this particular example, x can take only two values, 0 or 1. In this case there are only 
four cells in the data - i.e. there are only four different combinations of {x,D}. Define 
 

 
 
Thus we need to estimate only four quantities: ( )01r , ( )00r , ( )11r  and . With the 
present data: 

( )10r

 
  ( ) 72/)86(01̂ =+=r

( ) 5.42/)54(00̂ =+=r  

 1



( ) 51/511̂ ==r  
( ) 22/)22(10̂ =+=r  

 
This is quite neat in the sense that none of these predications are obtained by 
extrapolation or interpolation in the data: only observations where {D,x} are exactly as 
conditioned in the expectation are used to estimate the latter. That is, to calculate , 
we only use observations for which {w=1, x=0}. The beauty of this is that we don’t have 
to specify a functional form relationship between the expected value of y and {D,x}.  

( )01r

 
We can now add three columns to the data above, showing the estimated functions  and 

, given x, and the difference 
1r

0r ( ) ( )( )ii xrxr 01 ˆˆ − : 
 

id y w x ( )ixr1̂  ( )ixr0̂  ( ) ( ii xrxr 01 ˆˆ − )  

1 4 0 0 7 4.5 2.5 
2 6 1 0 7 4.5 2.5 
3 5 0 0 7 4.5 2.5 
4 8 1 0 7 4.5 2.5 
5 2 0 1 5 2 3 
6 5 1 1 5 2 3 
7 2 0 1 5 2 3 

 
And now we can estimate the ATE simply by calculating the average of the numbers in 
the last column: 
 
  7143.2ˆ =ETA
 
To get an estimate of the average treatment effect for the treated, we simply discard all 
non-treated observations when computing the average: 
 
 . ( )( ) 6667.2335.25.2 1 =++= −ATT
 
Finally, let’s illustrate how this links to the regression approach. Because x takes only 
two values, there are only four categories - as defined by the values {D, x} - of 
observations in the data. Therefore, the following regression is completely unrestrictive 
in terms of the functional form relationship between {D, x} and the outcome variable y: 
 
 ( ) iiiiii xwxwy εββββ +⋅+++= 3210  
 
Notice that  
 
 ( ) 101 0 ββ +=r  

( ) 00 0 β=r  
( ) 32101 1 ββββ +++=r  
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( ) 200 1 ββ +=r  
 
If I estimate this regression using the data above I obtain the following results: 
 
      Source |       SS       df       MS              Number of obs =       7 
-------------+------------------------------           F(  3,     3) =   10.09 
       Model |  25.2142857     3   8.4047619           Prob > F      =  0.0447 
    Residual |         2.5     3  .833333333           R-squared     =  0.9098 
-------------+------------------------------           Adj R-squared =  0.8196 
       Total |  27.7142857     6  4.61904762           Root MSE      =  .91287 
 
------------------------------------------------------------------------------ 
           y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
           w |        2.5   .9128709     2.74   0.071    -.4051627    5.405163 
           x |       -2.5   .9128709    -2.74   0.071    -5.405163    .4051627 
          wx |         .5   1.443376     0.35   0.752    -4.093466    5.093466 
       _cons |        4.5   .6454972     6.97   0.006      2.44574     6.55426 
------------------------------------------------------------------------------ 
 

(abstract from everything here except the point estimates). You can now confirm that this 
gives exactly the same estimates of ATE and ATT as with the previous approach. 
 
In cases where there are many x-variables, and/or the x-variable(s) can take many 
different values, it will be impractical to calculate the expected values of y for each 
possible combination of {D,x} in the data.  
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2. Propensity score matching: Example  
 
The data in this illustration have been used in the following paper: 
 
Gilligan, Daniel O. and John Hoddinott (2007). "Is There Persistence in the Impact of 
Emergency Food Aid? Evidence on Consumption, Food Security and Assets in Rural 
Ethiopia," American Journal of Agricultural Economics 
 
The outcome variable is consumption growth and the treatment variable is getting food 
aid. I have computed the propensity score, and sorted the data from the lowest to the 
highest pscore value. The full sample consists of 630 observations. 
 
Table 2: Propensity scores and kernel weighting 
Pscore Treatment K Consumption 

growth 
weight weight x 

dlrconsae56 
for matched 
obs only 

Estimated 
counterfactual 

0.0192 0 . 1.645944 .   
0.0271 0 0.1633 0.1656 0.0193 0.003196  
0.0323 0 0.2729 0.9741 0.0323 0.031463  
0.0496 0 0.555 0.4457 0.0656 0.029238  
0.0623 0 0.6833 0.6962 0.0808 0.056253  
0.0678 0 0.7181 0.5031 0.0849 0.042713  
0.0705 0 0.7305 2.5273 0.0864 0.218359  
0.0802 1 . 0.041 .  0.071846 
0.0814 0 0.7497 -0.4217 0.0886 -0.03736  
0.0864 0 0.7419 -1.0075 0.0877 -0.08836  
0.0868 1 . 0.9315 .   
0.0927 0 0.7171 -0.176 0.0848 -0.01492  
0.0957 0 0.6999 -0.2276 0.0827 -0.01882  
0.1007 0 0.6625 0.2748 0.0783 0.021517  
0.1036 0 0.6354 -0.4609 0.0751 -0.03461  
0.1087 1 . -1.7197 .   
0.1227 0 0.3735 -1.0766 0.0442 -0.04759  
0.1286 0 0.2608 1.1565 0.0308 0.03562  
0.1303 0 0.2266 -2.3975 0.0268 -0.06425  

0.132 0 0.1911 -2.2201 0.0226 -0.05017  
0.1379 0 0.0566 -1.0091 0.0067 -0.00676  
0.1393 0 0.0206 -1.5242 0.0024 -0.00366  
0.1451 0 . 0.9553 .   
0.1467 0 . 0.6368 .   

(...)       
SUM    1.000 0.071846  

 

Suppose now we want to calculate the counterfactual of the first treated individual in the 

data, i.e. the shaded observation. I see that his value of dlrconsae56 (which in this context 

is his y1) is equal to 0.0410.  
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• First, I calculate values of K for all observations in the control group. To be able 

to do so, I need to define the 'bandwidth'. I set this to 0.06, which is the default in 

psmatch2). These values are shown in the third (K) column. Notice that 

observations in the control group that have values of the propensity score close to 

0.0802 get a relatively high value of K. 

• I proceed by calculating the weights for the observations in the control group, 

using the formula 

 

i, j 
K pxj−pxi

∑j1
NC,i K pxj−pxi

This gives me the values shown in the ‘weight’ column. Notice that they will sum 

to one. 

• I then obtain the weighted average of consumption growth for the individuals in 

the control group, using these weights. That is my estimate of the counterfactual 

for the treated individual here. That value turns out to be 0.0718. 

• Thus, the treatment effect for this individual is 0.041-0.0718 = -0.0308. 

• To get the average treatment effect for the treated, I proceed as above for each 

treated individual, and then calculate the average of the treatment effects. This 

gives me an estimate equal to 0.21496, which is the number reported by 

Hoddinott & Gilligan. 

• If you were using a nearest neighbour approach instead of kernel matching, what 

would the counterfactual be?  

• Note: These computations use and Epanechnikov kernel. The Epanechnikov 

density function is equal to ( )2175.0 u− , where u takes values between -1 and 1 

(for values of u outside this range, the density is zero). The density function is 

shown in Figure 1. 
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Figure 1: The Epanechnikov distribution 
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