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1 Introduction

This appendix contains additional material for the study "Conditional Investment-

Cash Flow Sensitivities and Financing Constraints,�by Stephen R. Bond and

Måns Söderbom; henceforth Bond and Söderbom (2011). Section 2 describes the

numerical procedure used to generate the simulated investment data analyzed

in the paper; Section 3 discusses additional simulation results.

2 The dynamic programming model

The �rm�s objective is to maximize the value of the �rm:
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subject to the following constraints (which hold for all t):

(i) Non-negative dividends:
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(ii) Non-negative new equity:

Nt � 0

(iii) Non-negative debt:

Bt � 0

(iv) Capital evolution:

Kt+1 = It + (1� �)Kt

(v) Non-negative capital:

Kt+1 � 0:

Exploiting linear homogeneity of the value function

Since the value function is linear homogeneous in capital, we can eliminate

Kt from the state space by normalizing by Kt (see, for example, Bloom, 2009).

Using the interest rate schedule,

i(Kt; Bt�1) = i+ �

�
Bt�1
Kt

�
;

the capital evolution constraint,

Kt+1

Kt
= It=Kt � � + 1;

and de�ning �t = �t=Kt; vt = Vt=Kt; �t = �t=Kt; bt�1 = Bt�1=Kt; nt =

Nt=Kt, and

	t = [It=Kt � � + 1] bt � [1 + i+ �bt�1] bt�1:

we can write the value of the �rm as
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subject to the following constraints (which hold for all t):

(i) Non-negative dividends:

�
�
It=Kt; a

P
t ; a

T
t

�
� �(nt) + 	t + nt � 0

(ii) Non-negative new equity:

nt � 0

(iii) Non-negative debt:

bt � 0

(iv) Non-negative capital:

It=Kt � � + 1 � 0:

Solving the Bellman equation using value function iteration

We solve the �rm�s optimization problem using value function iteration. The

principles of our algorithm are as follows.

1. Start with a guess for the true value function v(bt�1; aPt ; a
T
t ): Call this

guess v1. Use it on the right-hand side of the Bellman equation (A1), and

compute Et
�
v
�
bt; a

P
t+1; a

T
t+1

��
(more on how to compute this expectation

below). Find the values of fIt=Kt; nt; btg that maximize �rm value subject

to the relevant constraints.

2. Update the true value function v(bt�1; aPt ; a
T
t ) using the solution obtained

in the previous step (i.e. this is the value v associated with optimal

fIt=Kt; nt; btg). Call this updated guess v2: Check if v2 = v1; if true,

we have converged to the true function and so iteration can stop; if not

set j = 2 and go to step 3.

3



3. Set j = j + 1: Use vj�1 on the right-hand side of the Bellman equa-

tion to compute Et
�
v
�
bt; a

P
t+1; a

T
t+1

��
, and calculate the optimal choice

rule fIt=Kt; nt; btg, subject to the relevant constraints. Update the value

function, vj : Check if vj = vj�1; If true, there is convergence and so

iteration stops; if not, repeat step 3.

To implement this method we need to discretize the state and control space,

and we need a way of calculating the expected value of the �rm in t + 1. We

turn to these issues next.

State space and control space

We discretize the distribution of the debt variables bt�1 (state) and bt (control)

by constructing a �nite set of permissible values (b1; b2; :::; bMb
) where b1 is the

lowest permissible value, bMb
the highest, and Mb is the number of permissible

values. The results in the paper are based on models in which b1 = 0, imposing

non-negative borrowing (thus b1 is determined by an economic constraint). The

upper limit is set su¢ ciently high not to bind. Throughout we use Mb = 18.

We discretize the distribution of the investment variable (It=Kt) (control)

by constructing a �nite set of permissible values (ik1; ik2; :::; ikMi
) where ik1

is the lowest permissible value, ikMi
the highest, and Mi is the number of

permissible values. The upper and lower limits are set such that they will not

bind. Throughout we use Mi = 120.

The distribution of new equity nt is not discretized. De�ne

�t =

�
0 if �

�
It=Kt; a

P
t ; a

T
t

�
+	t � 0

1 if �
�
It=Kt; a

P
t ; a

T
t

�
+	t < 0

�
:

Thus �t = 1 implies that the �rm has to issue new equity to satisfy the non-

negativity constraint for dividends. With the cost of issuing new equity given
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by �(nt) = 0:5�n2t , optimal new equity nt is as follows:

nt =

�
0 if �t = 0
�
�
�
�
It=Kt; a

P
t ; a

T
t

�
� 0:5�n2t +	t

�
> 0 if �t = 1

�
If � > 0; the �rm will be �nancially constrained whenever �t = 1, in which case

new equity satis�es the quadratic

nt + �
�
It=Kt; a

P
t ; a

T
t

�
� 0:5�n2t +	t = 0: (A2)

Optimal new equity is the positive root of (A2):

nt =
�1 +

q
1� 2�

�
�
�
It=Kt; aPt ; a

T
t

�
+	t

�
�

;

which is always real (since �
�
It=Kt; a

P
t ; a

T
t

�
+	t < 0).

The serially uncorrelated shock aTt , assumed normally distributed in the

model, is approximated using a discrete Gauss-Hermite quadrature. This im-

plies the value function is evaluated at a �nite set of variance dependent values

�T
p
2
�
x1 x2 ::: xMT

�
where the xj are values (nodes) determined by the

Gauss-Hermite quadrature, and MT is the number of nodes. The expectation

of the value function Et
�
v
�
bt; a

P
t+1; a

T
t+1

��
is computed by summing over the

MT possible realizations of the value function conditional on bt and aPt+1 using

a set of weights determined by the Gauss-Hermite quadrature. See Judd (1998),

pp.261-263 for details. Throughout we use MT = 3:

The serially correlated component of the productivity parameter aP is ap-

proximated using the method proposed by Tauchen (1986). The value function

is evaluated at a �nite set of possible realizations
�
�aP1 ; �a

P
2 ; :::; �a

P
MP

�
; where MP

is the number of possible realizations. A transition matrix � is constructed;

consisting of elements �ij = Pr
�
aPt+1 = �a

P
j jaPt = �aPi

�
determined by the persis-

tence parameter � and the variance parameter �P . Having integrated over the
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distribution of aT as described in the previous paragraph, we obtain the ex-

pectation Et
�
v
�
bt; a

P
t+1; a

T
t+1

��
; conditional on the policy bt and current state

�aPi by summing the value function over the MP possible realizations of aPt+1

using the elements in the ith column of the transition matrix � as weights.

Throughout we set MP = 15.

The simulated data

Once the value iteration has converged, we recover the policy functions for

investment, debt and new equity. Based on these we simulate panel data ac-

cording to the principles described in the text.

3 Additional simulation results

In this section we discuss additional simulation results. Table A.1 shows sum-

mary statistics for a simulated sample based on a model with no cost premium

for external �nance and no debt. Tables A.2-A.5 show results for the model

without debt (cf. Table 1 in the main paper) with alternative values for the

parameters in the productivity process. Table A.6 shows results for the model

without debt with the variance of the measurement errors in investment reduced,

resulting in a higher R-squared. Table A.7 shows estimates of the structural

model with the non-negativity constraint on debt relaxed and the interest rate

schedule de�ned as

i(Kt+1; Bt) = i+ 1[Bt>0]�

�
Bt
Kt+1

�
:

3.1 Summary of the results

Table A.1 shows that, in the model with no cost premium for external �nance

and no debt, the mean of the average q variable is close to one, and the mean
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of the investment rates is close to 0.15, the rate of depreciation. The mean of

the ratio of cash �ow to capital is 0.187 which is close to the implied user cost

of capital given our calibration. This in turn implies zero expected (excess)

pro�ts. Correlations between observed investment, average q, and cash-�ow

range between 0.35 and 0.71.

Table A.2 shows that reducing the serial correlation of productivity from 0.5

to 0.45 whilst keeping the relative importance of persistent and transitory com-

ponents constant results in a reduction in the estimated cash-�ow sensitivities

for a given value of the parameter �. For example, in the case where � = 4, the

estimated coe¢ cient on cash-�ow falls from 0.100 (Table 1, column (iv), in the

paper) to 0.047 (Table A.2, column (iv)). We still obtain a monotonic increase

in the coe¢ cient on cash-�ow as issuing new equity becomes more expensive.

Table A.3 shows that as the serial correlation of productivity is reduced fur-

ther (to 0.30), the estimated cash-�ow sensitivities are further reduced while

the monotonicity result still holds.

In the models underlying Tables A.4 and A.5 we vary the parameter �,

which measures the serial correlation in the persistent part of productivity,

while keeping the serial correlation of overall productivity �xed at 0.5. This

requires changes to the relative variance of persistent to overall productivity.

The results in Table A.4, obtained for a model in which � is reduced from 0.8 to

0.7, indicate that a reduction � implies smaller estimated cash-�ow sensitivities

for a given value of the parameter �. We still obtain a monotonic increase in

the coe¢ cient on cash-�ow as issuing new equity becomes more expensive. In

Table A.5, where we increase � to 0.81, we obtain higher estimated cash-�ow

sensitivities for a given value of the parameter � than in our reference model

shown in Table 1 in the paper.
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Table A.6 shows results for the model without debt and with all the para-

meter values de�ned as speci�ed in the paper, except that the variance of the

measurement error term is reduced so as to increase the R-squared from 0.25

in the model with �=0 to 0.6. The estimated coe¢ cients on the cash-�ow term

are now equal to -0.001, 0.042, 0.071 and 0.102, for values of � equal to 0, 1,

2 and 4, respectively. The estimated standard errors vary between 0.0037 and

0.0038.

Table A.7 shows results for the structural speci�cation for models in which

�rms can choose negative debt and where negative debt is associated with a

penalty as explained in Section 4.4 in the text (results for excess sensitivity

speci�cations are shown in Table 5 in the paper). In all cases, the estimated

coe¢ cients are close to their theoretical counterparts.
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Table A.1: Summary statistics. Model with no cost premium for external finance and no debt 

 

Sample size:  N=2,000  T=14  Observations =28,000. These are the data underlying 
the regression results in Table 1, col. (i). 

 

Table A.2: Model with costly equity & no debt; serial correlation of tfp reduced from 0.5 to 0.45 
keeping the relative importance of persistent and transitory components constant (implies 
rho=0.72) 

(i) 

φ=0 
(ii) 

φ=1 
(iii) 

φ=2 
(iv) 

φ=4 
Q 0.1971 0.1966 0.1968 0.1867

0.0031 0.0031 0.0031 0.0031

C/K 0.0001 0.0172 0.0313 0.0473

0.0051 0.0051 0.0051 0.0051

R-sq 0.2449 0.2613 0.272 0.2689
Note: Sample size:  N=2000  T=14. Observations =28,000. OLS estimates. 

 

Table A.3: Model with costly equity & no debt; serial correlation of tfp reduced from 0.5 to 0.3 
keeping the relative importance of persistent and transitory components constant (implies rho = 
0.48) 

(i) 

φ=0 
(ii) 

φ=1 
(iii) 

φ=2 
(iv) 

φ=4 
Q 0.1959 0.2006 0.204 0.1979

0.0031 0.0031 0.0032 0.0032

C/K 0 0.0103 0.0195 0.0288

0.002 0.002 0.002 0.002

R-sq 0.2425 0.2749 0.299 0.3043
Note: Sample size:  N=2000  T=14. Observations =28,000. OLS estimates. 

 

  



Table A.4: Model with costly equity & no debt; rho reduced from 0.8 to 0.7 and the serial 
correlation of tfp kept fixed at 0.5 

(i) 

φ=0 
(ii) 

φ=1 
(iii) 

φ=2 
(iv) 

φ=4 
Q 0.1972 0.1985 0.1995 0.1917

0.0035 0.0035 0.0035 0.0035

C/K -0.0001 0.0108 0.0204 0.0306

0.0057 0.0057 0.0057 0.0057

R-sq 0.245 0.2602 0.2694 0.2656
Note: Sample size:  N=2000  T=14. Observations =28,000. OLS estimates. 

 

Table A.5: Model with costly equity & no debt; rho increased from 0.8 to 0.81 and the serial 
correlation of tfp kept fixed at 0.5 

(i) 

φ=0 
(ii) 

φ=1 
(iii) 

φ=2 
(iv) 

φ=4 
Q 0.1974 0.1854 0.1787 0.1653

0.0029 0.0029 0.003 0.003

C/K -0.002 0.0497 0.0879 0.1182

0.0084 0.0083 0.0084 0.0084

R-sq 0.2444 0.2478 0.2497 0.2422
Note: Sample size:  N=2000  T=14. Observations =28,000. OLS estimates. 

 

Table A.6: Model with costly equity & no debt; variance of the measurement errors increased so 
as to increase the R-sq in the first specification from 0.25 to 0.6 

(i) 

φ=0 
(ii) 

φ=1 
(iii) 

φ=2 
(iv) 

φ=4 
Q 0.1989 0.1874 0.1801 0.1703

0.0014 0.0014 0.0014 0.0014

C/K -0.0008 0.0422 0.0705 0.1023

0.0037 0.0037 0.0037 0.0038

R-sq 0.5972 0.6007 0.5971 0.5961
Note: Sample size:  N=2000  T=14. Observations =28,000. OLS estimates. 



Table A.7: Costly new equity, costly debt, firms can have negative debt: Structural model estimates 
 
 (i) 

φ=0 
η=.25 

(ii) 
φ=1 
η=.25 

(iii) 
φ=2 
η=1 

(iv) 
φ=4 
η=20 

 Coef. s.e. Coef. s.e. Coef. s.e. Coef. s.e. 
Constant 
Q 
(Q-b)*n 

-0.0491 
 0.1989 
 0.0345 

0.0022 
0.0021 
0.0212 

-0.0456 
 0.1963 
-0.1972 

0.0022 
0.0020 
0.0525 

-0.0459 
 0.1967 
-0.4128 

0.0022 
0.0021 
0.0492 

-0.0510 
 0.2010 
-0.8298 

0.0023 
0.0021 
0.0735 

         
R-sq 0.25  0.25  0.25  0.25  
Note: The table shows results for a model in which firms can have negative debt. See Section 4.4 in Bond & Söderbom (2010) for details. Sample size:  
N=2000  T=14. Observations =28,000. OLS estimates. 




